by Kelvin

(2A)

(2A)^{5} × A^{5} | First, we have to remove the brackets in (2A)^{5} |

= (32A^{5})× A^{5} | To do so, we use the law: (ab)^{n} = a^{n}b^{n}Hence, we have: (2A) = ^{5}2^{5}A^{5} = 32A^{5} |

= 32 × A^{5} × A^{5} | Next, we simplify A^{5} × A^{5} |

= 32 × A^{10} | To do so, we use the law: a^{n} × a^{b} = a^{a + b}Hence, we have: A = ^{5} × A^{5} A^{5+5 = A10} |

= 32A^{10} | This is the simplified expression. |